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Human coding and computational text analysis are more
powerful when combined in an iterative workflow.

1. Text analysis tools can strategically select texts for
human coders—texts representing larger samples and
outlier texts of high inferential value.

2. Preprocessing can speed up hand-coding by extracting
features like names and key sentences.

3. Humans and computers can iteratively tag entities using
regex tables and group texts by key features (e.g.,
identify lobbying coalitions by common policy demands)

Applying simple search and text-reuse methods to public
comments on all U.S. federal agency rules, a sample of
10,894 hand-coded comments yields 41 million as-good-
as-hand-coded @ comments regarding both  the
organizations that mobilized them and the extent to which
policy changed in the direction they sought.

Hand-coding dynamic data

Workflow: googlesheets4 allows analysis and

improving data in real-time. For example, in Fig. 1:

e The “org_name” column is populated with a guess from
automated methods. As humans 1identify new
organizations and aliases, other documents with the same
entity strings are auto-coded to match human coding.

e As humans identify each organization’s policy ‘“ask,”

other texts with the same ask are put in their coalition.

If the organization and coalition become known, it no

longer needs hand coding.

Fig. 1: Coded Public Comments in a Google Sheet
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Regex tables to tag entities

e Deductive: Start with databases of known entities.

Table 1: Lookup Table Deduced from Center for Responsive Politics
Lobbying Data, Collapsed into an Initial Regular Expression Table

Entity Pattern

3M Co|3M Health Information Systems|Ceradyne|Cogent

M Co Systems|Hybrivet Systems
Teamsters Brotherhood of Locomotive Engineers (and|&)
Union Trainmen|Brotherhood of Maint[a-z]* of Way

Employ|Teamsters

e Inductive: Add entity strings that frequently appear in
the data to regex tables.

e Iterative: Add to regex tables as humans identify new
entities or new aliases for known entities. Update data
(Google Sheets) to speed hand coding.

Fig 2: Iteratively Building Regex Tables
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For example, the legislators package uses a regex
table, adding variants (e.g., “AOC”) to standard legislator
names to detect them in messy text.

Entity extraction

1) Deductive regex tables +
2) Inductive regex tables +
3) lterative regex tables

New entities +
New aliases for
known entities

Prepopulate
entity field

Hand-code entities

Results: Who mobilizes public comments?

Of 58 million public comments on proposed agency
rules, the top 100 organizations mobilized 43,938,811.
The top ten organizations mobilized 25,947,612.

Table 2: The Top 5 Organizations Mobilized 20 Million Public Comments

Rules Percent Average
Lobbied Pressure (Campaigns per

Organization @ On Campaigns /Rules) Comments Campaign
NRDC 530 62 11.7% 5,939,264 95,795
Sierra Club 591 110 18.6% 5,111,922 46,472
CREDO 90 41 456% 3,019,150 73,638
Environmental g, 31 7% 2849517 91,920
Defense Fund
Center For
Biological 572 86 15.0% 2,815,509 32,738
Diversity
Earthjustice 235 59 25.1% 2,080,583 35,264

Grouping with text reuse

Fig. 3: Iteratively Group Documents
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Fig 4: Identifying Groups of Linked Documents with Text
Reuse (a 10-gram Window Function)
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e Document A shares no 10-word phrases with the others

e B, C, and D share some text (they are part of an organized
mass comment campaign)

e E and F are the same text that was submitted twice

Results: Most public comments result from
organized pressure campaigns

Fig. 5: Public Comments on Regulations.gov, 2005-2020
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Comments that share a 10-gram with 99 or more others
are part of a mass comment campaign.

Grouping with key phrases

1. Humans 1dentify groups of selected documents (e.g.,

lobbying coalitions)

2. Humans copy and paste key phrases

3. Computer puts other documents containing those
phrases 1n the same group (coalition)

Preprocessing tip: Summaries speed hand-coding (e.g.,
use textrank to select representative sentences).

Results: Larger coalitions — more likely to win

Fig. 6: Lobbying Success by Campaign Size
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Public pressure on climate and environmental justice
greatly affected policy documents (Fig. 7), but a few
organizations dominate lobbying coalitions (Table 2).
When tribal governments or local groups lobby without
the support of national advocacy organizations,
policymakers typically ignore them.

Fig. 7: Policy Text Change by Coalition Size
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Next steps

e Compare exact entity linking (regex tables) to
probabilistic methods (1inkit, fastlink, supervised
classified with hand-coded training set)

e Compare exact grouping (e.g., by policy demands) to
supervised probabilistic classifiers/clustering
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